

Rocky Flats Environmental Technology Site P.O. Box 464 Golden, Colorado 80402-0464 Phone: (303) 966-7000

March 30, 1999

Alan Rodgers
Waste and Remediation Operations
Kaiser-Hill, L.L.C
Building 130

MOUND SITE PLUME SECOND QUARTER REPORT MILESTONE COMPLETION - JEL-039-99

This correspondence is to notify you of the satisfactory completion by Rocky Mountain Remediation Services (RMRS) of the Mound Site Plume Second Quarter Report to the Department of Energy (DOE). This is a WAD 83 internal milestone, WBS element 1.1.03.08.03.02.

The document was delivered to the DOE and Kaiser-Hill on March 30, 1999 (see attached letter). If you have any questions concerning completion of the milestone for the Mound Site Plume Second Quarter Report, please contact Annette Primrose at extension 4385.

John E. Law

Vice President, South Side and ER Projects

ALP/aw

Attachment: As Stated

Cc:

J. L. Butler

C. D. Cowdery

T. Greengard

S. Mills

M. Peters

A. L. Primrose

Rocky Mountain Remediation Services, L.L.C.

. . . protecting the environment

Rocky Flats Environmental Technology Site PO Box 464

P.O. Box 464

Golden, Colorado 80402-0464 ne: (303) 966-7000

CORRES. CONTROL LTR. NO.

Originator Ltr Log #

ALA-013-99

98 - RF - 0/246

BENSON, C.A. CARMEAN, C.H. CRAWFORD, A.C DAWSON, D. FINDLEY, M.E.

FITZ R.C.

GUINN, L.A

HUGHES, F.P LAW, J. E. MILLS, STEVI

OVERLID, T. W. PATTERSON, J. W.

SUTTON, S. R. TRICE, KELLY WHEELER, M.

RMRS RECORDS

RF CORRES.

PATS/T130G

JNCLASSIFIED

CONFIDENTIAL

TRAFFIC

UCNI

___ Ma

March 30, 1999

99-RF-01246

Norma Castañeda ES&H Program Assessment DOE, RFFO

TRANSMITTAL OF QUARTERLY STATUS REPORT FOR THE MOUND SITE PLUME PROJECT – ALP-013-99

Action: Delivery of Quarterly Status Report for the Mound Site Plume Treatment Project by March 31, 1999.

Rocky Mountain Remediation Services (RMRS) is pleased to deliver the attached copy of the quarterly Report for the Mound Site Plume Treatment project as per the Mound Site Plume IM/IRA. This is also in fulfillment of the scheduled milestone due March 31, 1999.

If there is any additional information you would like to have incorporated into the existing format for the next quarter's project report, please do not hesitate to contact Annette Primrose at extension 4385 or pager 212-6338.

alPrimo

A. L. Primrose Project Manager

Groundwater Remediation

Original and 1 cc - N. Castañeda

Attachment: As Stated

Cc:

Х

J. L. Butler, Kaiser-Hill

T. C. Greengard, Kaiser-Hill

AUTHREVIEW WAIVER PER

CLASSIFICATION:

CLASSINGATION OFFICE

Date: 3-30-99

N REPLY TO RF CC NO.:

ACTION ITEM STATUS: PARTIAL/OPEN CLOSED

TR APPROVALS:

r

QUARTERLY REPORT FOR THE MOUND SITE PLUME TREATMENT PROJECT

January Through March 1999

March 30, 1999

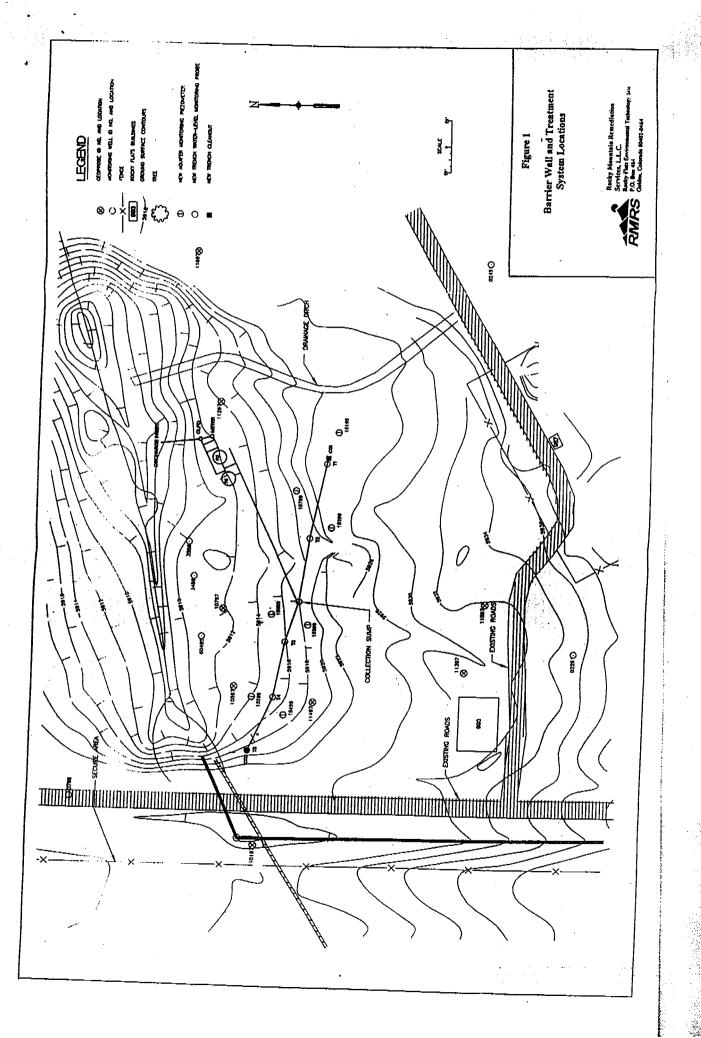
INTRODUCTION

The Mound Site Plume Treatment System collects and treats the contaminated groundwater plume derived from the Mound Site to the Groundwater Action Level Framework Tier II level concentrations defined in the Rocky Flats Cleanup Agreement (RFCA) (DOE, 1996), and demonstrates the feasibility of using this system on other contaminated groundwater plumes. The components of the Mound Site Plume System are shown on Figure 1.

The Mound Site Plume Treatment Project was a cooperative effort between RFETS and the Department of Energy Subsurface Contaminant Focus Area (EM-50), with support from the US Environmental Protection Agency (EPA) SITE Program. The Mound Site Plume Treatment Project employs innovative technology for the collection and treatment of contaminated groundwater containing chlorinated organic contamination and low levels of radionuclides.

This report covers the activity and available data for the quarter from January 1, 1999 to March 31, 1999. Included in this report are the analytical results for samples collected in the previous quarter, but which were not available in time to be included in the last quarterly report. There are no safety issues for this reporting period.

PROJECT EVENTS


Raking of the iron in the two treatment cells continues along with water level monitoring, and sample collection by the EPA SITE Program (performed by TetraTech). Each of the two treatment cells contains 8 feet of iron filings that act as the treatment medium for the contaminated water. The surface of the iron filings requires regular raking to prevent formation of a crust. The crust continues to form and requires mechanical disruption in Reactor Cell 1. No crust has been observed in Reactor Cell 2. The piezometers for monitoring upgradient and downgradient water levels were installed during this quarter. Installation of these 7 piezometers was completed on January 7, 1999.

TREATMENT EFFECTIVENESS

Flow rates from the treatment system for the December-March period are shown on Figure 2. The higher flow rates in late December correspond to a storm event; the steadily increasing flow rates correspond to the beginning of the wet season.

Water levels within the collection trench are monitored by 5 piezometers (P1 through P5). Locations are shown on Figure 1 with the results shown in Table 1. These data indicate that the east side of the collection trench is dry, as was anticipated. This side of the plume was believed to be dry prior to installation of the collection system. Water levels from the piezometers up- and downgradient of the collection trench were measured weekly for the first month, and are now measured monthly. These results are also shown in Table 1.

The total flow volume through the system as of March 26, 1999 was 55,102 gallons of water. The average flow rate for January through March was 0.28 gallons per minute.

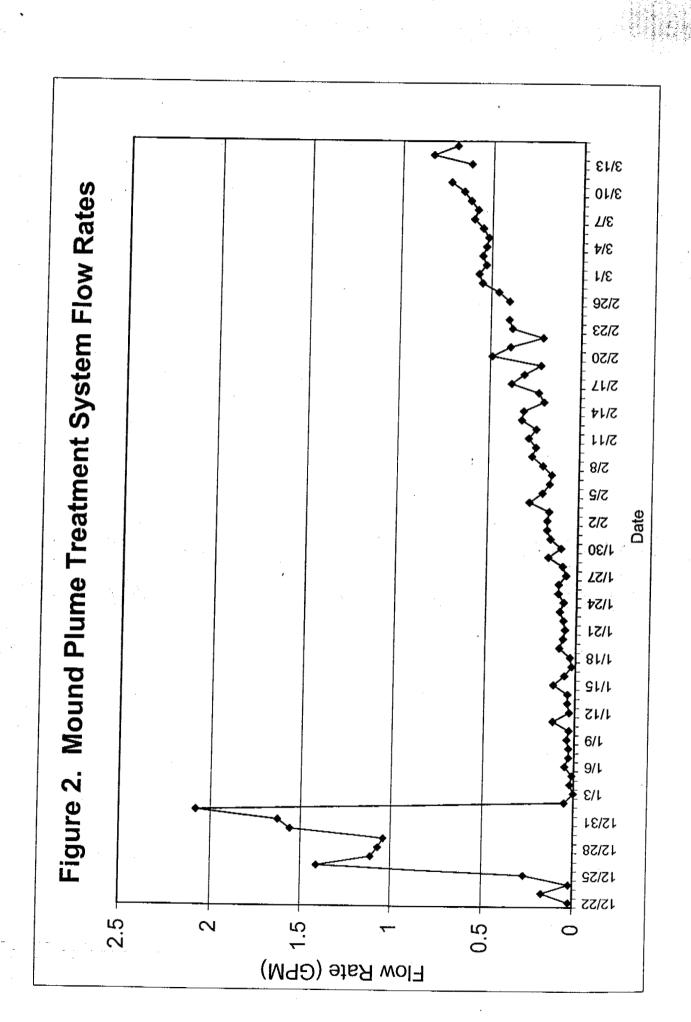


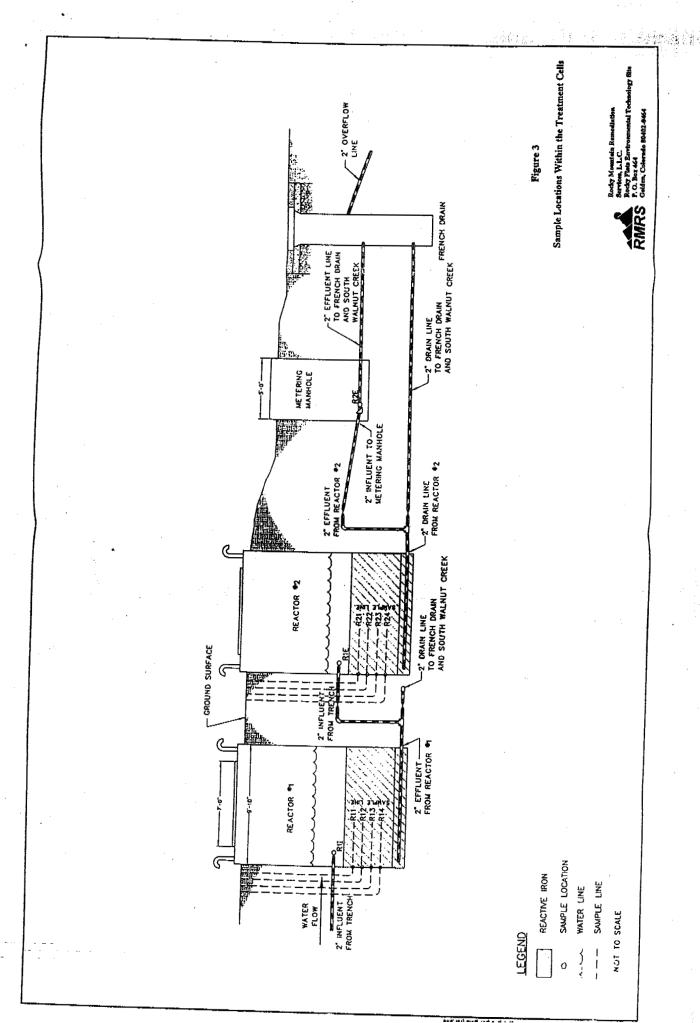
Table 1. Mound Plume Piezometer water levels (in feet below top of casing)

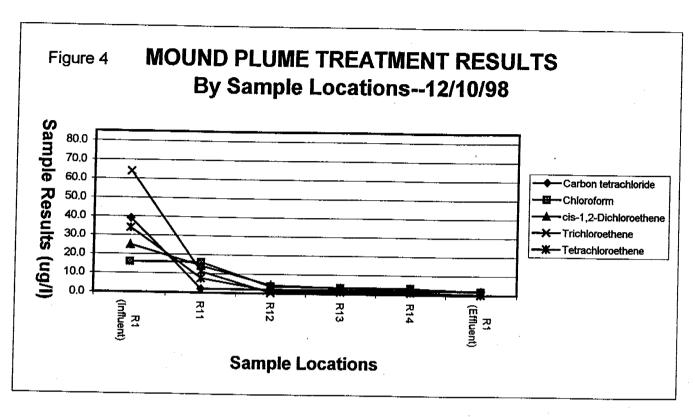
Table 1. Mound							n casing)	
Date	12/29/98	1/15/99	1/22/99	01/27/99	1/28/99	2/4/99	02/23/99	3/1/99
Trench Piezomete	ers	<u>.</u>		•				
Pl' (East)	Dry	NM	NM	Dry	NM	NM	Dry-	NN
P2'	10.55	MM	NM	10.56	NM	NM	10.92	NN
P3'	7.92	NM	NM	7.95	NM	NM	8.35	NN
P4'	7.98	NM	NM	8.01	NM	NM	8.38	NN
P5' (West)	10.88	NM	NM	11.00	NM	NM	NM	NN
Collection Sump	7.07	7.00	7.04	7.10	7.07	7.12	NM	7.56
Groundwater Piez	ometers							
15199	NM	11.53	10.57	MM	11.12	10.51	NM	8.97
15299	NM	12.49	12.29	NM	12.87	12.76	NM	12.50
15399	NM	10.47	9.83	NM	10.54	9.91	NM	8.12
15499	NM	2.61	2.77	NM	2.74	2.71	NM	2.79
15599	NM	10.20	9.94	NM	10.53	10.58	NM	DRY
15699	NM	11.24	9.91	NM	10.52	9.54	NM	12.01
15799	NM	11.29	10.88	NM	11.58	11.15	NM	11.49
3586	MM	7.87	8.03	NM	7.99	7.94	NM	7.85

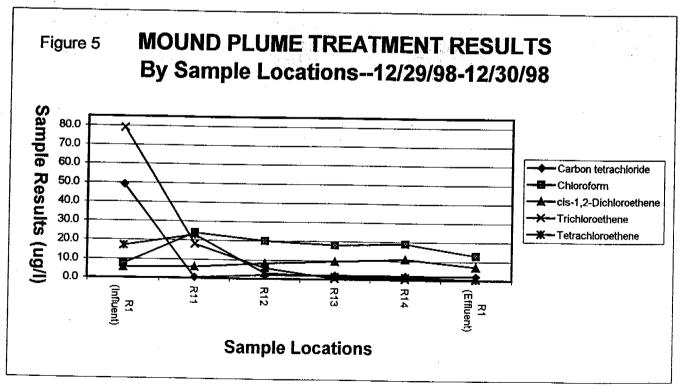
NM = Not measured

Samples were collected twice in December, 1998, and once per month for a total of four sampling events as of March 1999. Four sets of sample results were received this quarter and are provided in Appendix A. As of the report date, the data has not been verified or validated and a data quality assessment has not been conducted. Three sets of influent samples were collected for later statistical analysis. The first sample collected from each set is used for the following summaries. The results indicate that the volatile organic compounds (VOCs) are being removed within the first foot of reactive iron, with concentrations of trichloroethene, tetrachloroethene, and carbon tetrachloride showing significant decrease from the influent sample port to the first sample port. Concentrations of VOCs are low to non-detect in samples collected from the second, third, and fourth sample ports. Figure 3 shows the sampling locations within the treatment cells.

December 10, 1998 Sampling Event: Contaminants of concern include carbon tetrachloride, chloroform, cis 1,2-dichlorethene, tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, and methylene chloride. Samples collected at the effluent from the first treatment cell show that all of these VOCs were reduced to levels below the RFCA Tier II Groundwater Action Levels at this location (see Table 2 and Figure 4).


Table 2. Summary of the December 10, 1998 Sampling Event


Contaminant	Average Influent	Effluent from Reactor 1	RFCA Groundwater
· ·	Conc. (ug/l)	Concentrations (ug/l)	Tier II Action levels (ug/l)
Carbon Tetrachloride	39.5	ND	5
Chloroform	16	1.7	100
cis 1,2-dichloroethene	25	1.8	70
Tetrachioroethene	34.5	0.25 J	5
1,1,1-Trichloroethane	3.6	ND	200
Trichloroethene	65	0.39 J	5
Methylene Chloride	1.3	2.7 J	5
Total Uranium	<mda< td=""><td>0.552</td><td>10 pCi/l</td></mda<>	0.552	10 pCi/l


ND = Not detected at the detection limit for this analysis

J = Detected below detection limit for analysis

<MDA = Below the minimum detectectable activity

December 29-30, 1998 Sampling Event: All VOCs were reduced below the RFCA Groundwater Tier II Action Levels as shown below in Table 3 and on Figure 5.

Table 3. Summary of the December 29-30, 1998 Sampling Event

	Average Influent	Effluent from Reactor 1	RFCA Groundwater
Contaminant	Conc. (ug/l)	Concentrations (ug/l)	Tier II Action levels (ug/l)
Carbon Tetrachloride	49.3	ND	5
Chloroform	7.4	13	100
cis 1,2-dichloroethene	5.6	7.1	70
Tetrachloroethene	17.3	0.28 J	5
1,1,1-Trichloroethane	3.5	ND	200
Trichloroethene	19.3	0.51 J	5
Total Uranium	9.5 pCi/l	<mda< td=""><td>10 pCi/l</td></mda<>	10 pCi/l

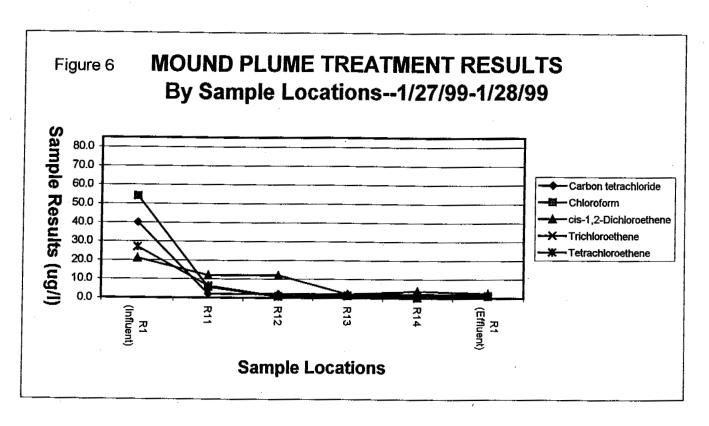
ND = Not detected at the detection limit for this analysis

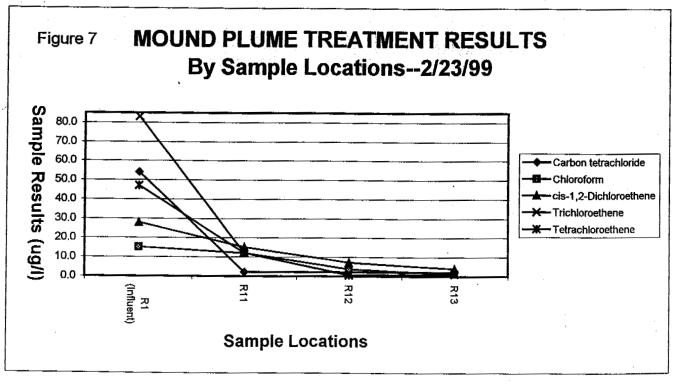
January 27, 1999 Sampling Event: All VOCs were reduced below the Groundwater Tier II Action Levels, as shown below in Table 4 and on Figure 6. However the effluent sample showed an increase from the influent concentration for methylene chloride and acetone. Acetone is a common lab contaminant, has not been encountered anywhere else in the system and is unlikely to be a treatment reaction product. Methylene chloride is found in the influent, but at a lower amount than within the effluent. Methylene chloride is also a common lab contaminant, but it also might be due to a reaction within the treatment system. Regardless of the origin, the concentrations are below action levels. It is assumed that because these are common solvents used in analytical laboratories, the levels detected are a result of cross contamination within the analytical testing lab.

Table 4. Summary of the January 27, 1999 Sampling Event

Contaminant	Average Influent Conc. (ug/l)	Effluent from Reactor 1 Concentrations (ug/l)	RFCA Groundwater Tier II Action levels (ug/l)
Carbon Tetrachloride	42	ND	5
Chloroform	12.7	0.66	100
cis 1,2-dichloroethene	22	2.6	70
Tetrachloroethene	28	ND	5
1,1,1-Trichloroethane	3.8	ND	200
Trichloroethene	57	ND	5
Methylene Chloride	0.61 J	1.8 J	5
Acetone	ND	4.2 J	3,650
Total Uranium	13.4 pCi/l	0.132 pCi/l	10 pCi/l

ND = Not detected at the detection limit for this analysis


February 23, 1999 Sampling Event: All VOCs were reduced below the Groundwater Tier II Action Levels, as shown below in Table 5 and on Figure 7. However the influent sample contained acetone and methylene chloride and these were also detected in the blank sample run by the analytical lab. While the effluent sample also showed an increase from the influent concentration for methylene chloride, both acetone and methylene chloride were also detected in the blank sample run by the lab for the effluent samples. These contaminant concentrations are below action levels, and are most likely to be from contamination within the analytical testing lab.


J = Detected below detection limit for analysis

<MDA = Below the minimum detectectable activity

J = Detected below detection limit for analysis

B = Contaminant also detected in analytical lab blank, indicating possible lab contamination.

Quarterly Report for the Mound Site Plume	RF/RMRS-99-344.UN
Treatment Project, January through March 1999	March 30, 1999
	Page 9 of 9

Table 5. Summary of the February 23, 1999 Sampling Event

Contaminant	Average Influent Conc. (ug/l)	Effluent from Reactor 1 Concentrations (ug/l)	RFCA Groundwater Tier II Action levels (ug/I)
Carbon Tetrachloride	54	ND	5
Chloroform	15	1.4	100
cis 1,2-dichloroethene	28	4.0	70
Tetrachloroethene	47	ND	5
1,1,1-Trichloroethane	4.9	ND	200
Trichloroethene	83	ND	5
Methylene Chloride	1.5 JB	4.7 JB	5
Acetone	12 JB	1.4 JB	3,650

ND = Not detected at the detection limit for this analysis

CONCLUSIONS

The Mound Site Plume Treatment Project is fully operational and treating contaminated groundwater to below the specified system performance requirements. Ongoing maintenance, raking the iron filings and retrieving flow rate and water level data, are the only required activities. Sampling will continue at regular intervals to verify the performance of the treatment system. For the next quarter, April through June 1999, no changes in the system are expected.

REFERENCES

DOE, 1996, Final Rocky Flats Cleanup Agreement, Rocky Flats Environmental Technology Site, Golden, CO, July.

DOE, 1997, Final Mound Site Plume Decision Document, RF/RMRS-97-024, September.

J = Detected below detection limit for analysis

Table 3. Mound Plume Treatment System Analytical Results (Preliminary) in ug/l

				reactor 1 Sample Line	Ē	12/10/98		Detection 121088	T T	0.0	0.0	9.5	200	1.0		2.0	0.5	÷	2.5	9 0	27	5.0	5 0	0.1	0.0	50	5.0	0,1	6 4 :	0.0	20	2 T	0,	į	2.18 103/	-01
				Line restor		1	_	L	T		2	2 8	2	29	2	2 £	12	2	0.35	0.22	3.3	2.9	9	2 5	5	3 E	9	2 2				0.16		Result Error	1 _	
			Reactor 1 Sample 1 in	R12	1271000		ETI-R12-S-01-121098	Detecti	199				2.0	•••	20.0			5 2		5.5		1.0							4 0		5 5			ڶڶ	7.29 103 7.	
		-		_			+	_	-	2 2	Ž	2 £	2	2 9	5 5	3.5	§ 2	0.62	96.0	Ç	2	9 S	2	25	5 5	9.5 G Z	9	2 2 2	2	<u> </u>	0.38	0.21 ON	ł	Result	7.47 103	
			Reactor 1 Sample Line		12/10/98	ED-RITS-m-134m	Detaction	- [10.0	5.0	0.0	5.0	0.	5.5	8.0	2.0	1.0	7 5	0,0	2.5		5 0	0.5	5 0	200	9.0	0.0	5 4	 0. a	0	5.5	5	Erroritana	_ I	7.29 10.2	
			_	_	\downarrow	4			2	29	5	2	55	2	5 43	2	9	0.43	49	2 9	72	2 9	2 9	9	S .	9	5 5	7.5	0.56 J	₽:	0.30	ę	Result	ĺ	17.0 7.	
		Reactor 1 e.	R11	12/10/98		FI-K11-8-02-121098	Limit	10.0	0.6	6	5.0	5.0	2.1	2.0	0.5	5.0		0.1				0.0			_				9.0		_	_	Error/MOA R		\dashv	
		_		4	_	Į.,	7	₽:	29	2	2 2	2	2 5	2	₽ §	9	7,5	5.44	13	5 5	2 2	S	2 5	Ş	2.6.1	Ş	5 5 5	12.1	. 55. E	=	787 NO ON	- 1	TIN THE	56 10 2		
		Reactor 1 Sample Line	K11	16/10/98	ETHR11-S-01-121098	Detection		200	1.0	5.5	90	1.0	5	5.0	50.0	5;	2 5	0	÷ 5	0.0	1.0	9.5	5 6:	5.0	2.0	9:	-	0.0	_	0, +	9	Error/MDA	┸	29 103 2		
	ŀ	Reacto		H	+		2	₽	2 2	5	2 5	<u> </u>	2 5	- 19. 5.5	25	2 2	0.45		8	2 5	Š	2	29	30.5	2	99	**	0.59	9 :	0.28 J	₽,	Result		7.3		
		Trip Blank	12710/88	ELRILTON	Detection	-	10.0	9.0	5 0	2.0	5 0:	2.5	2.0	9	0 0	2	0	2 64	9.0	5 0	. 6	0.0	0.6	20	5.0	0	4 0	0.0	<u> </u>	75	-	\parallel	_			
			1	-	-	100	2 5	2	2		2	22	2	8 8	Ş	25	<u>§</u>	2	2 2	Ş	9 9	2 2	2		를 문	2 5	2	2 5	2	99						
	Top of Reactor 1	(Influent)	12/10/98	ETI-R11-S-03-121098	Detection				5.0 4.0	_		50.7			2.0			* 0				. 0			_			_	2.0	-		4.81 103/	7.29 10.2			
-			+	1	\forall	Š	29	5 5	2	29	\$	2 5	δ	2 9	Ž	0.65 ;	25.5	2	នទ	₽	Š	2 5	<u>.</u>	2	9 9	8 5	3.7	28	0.37	Q.	Result	1				
	Job of Reactor 1 (Influent)	12/10/88	ET-R11-S-02-12-1000	Detection		20.0		2.0	0, 5	2.0	2.5	0.4	0.5	2.0	4.0	2.0	24	c. 4	0.0	9.0	2.0	0.0	10.0	2.0	2.0	2.0	9.1	50.0	22	2.5	Error/MDA	10,	4			
-	_	-	-	_'	2	2	2	2 5	5 5	5 8	2	S	 2	Q.	0.63.1	3.7	% <u>\$</u>	2 23	₽:	2 2	9	9	S C	2	5 %	9	3.6 D	99	0.36 J	ı	Kesult	17.4				
Top of Reactor 1	(influent)	12/10/98	ET-R11-S-01-121088	It Limit	20.0	5.0	0.0	0.4	10.0	4.2	20	4, L	4.	2.0	2.0	5.0	4 0.	2.0	5.0	2.0	2.0	10.0	0.0	2.0	2.6	5.0	2.0	5.0	20	Error/MDA	4.	7:29 10*				
		1		Result	29	2 5	5	8	2 2	39	<u> </u>	5	2 2		0.83	25	ş	8 5	Ş	2 9	2 2	0.61 J	2 5	2 2	8	8. 9. 9.	Q &	0.36.7	Q	Result		-01 10-				
	OcationDate	ample Number	Bramata	cetone	enzene	omodichloromethane	Official	Butanone (MEK)	arbon disulfice	Horobenzene	loroethane	Noromethane	bromochloromethane	2-Dichloroethane	l-Dichloroethene	12-Dichloroethene	-Dichloroethene (total)	-Dichloropropane	ns-1,3-Dichlomoropere	1) Albenzene	16xanone	dethyt-2-pentanona	rene	7.2.7 etrachioroethane	Cene	2-Trichlomethane	hioroethene	M Chloride		Kadionucilde	al Uranium (pCi/l)	1				

Table 3. Mound Plume Treatment System Analytical Results (Preliminary) in ug/l

			_															
	Reactor 1	Reactor 1 Sample Line R14	Reactor	Reactor 1 (Effluent)	Top of	Top of Reactor 1 (Influent)	Top of	Top of Resettor 1	Topof	Top of Reactor 1							Bearler	
ocation/Date	12/	12/10/98	12	12/10/98	125	12/29/98				() Land ()	a E	Trip Blank		Field Blank	Reactor	Reactor 1 (Effluent)	1	Rt1
amole Humber	F1.844.	FTLR14.9.01.424100					120	200	12/	12/28/98	1273	12/30/98	12/	12/30/98	12/	12/30/08	+24	+3/20/00
		Detection	E I HATES	CIPKIE-S-01-12/198	£71-R	£71-R11-S-01	ETI-R	ETIANSOZ	ETHR	11-8-03	FTLD	FTLBALTA						
rameter	Result	Limit	Result	1121	Desire	Detection	;	Detection		Detection		Detection	EIII	E (I-KIII-O)	ETH	ETHRIE-S-01	ETHR	ETI-R11-S-01
cetone	7.9 J	10.0	S	10.01	2	TO COL	Kesuit	Ĕ	Result	LmI	Result	Ę	Rasurt	Limit		Detection		Detection
902909	Ş	0.	Ş	10	2	2 -	2 9	10.0	2	10.0	S	10.0	Ş	1	Mesun	THE C	Result	Ę
omodichloromethane	2	0,7	g	2 5	2	2 9	2	6.	2	0.0	2	ç	Ž	10.0	2	10.0	Ş	0.01
mojoma.	ð	1.0	Ŷ	2	2 2	2 0	2	0	£	0.	Ş	=	Ş	2 4	2	,	g	1.0
ототетрале	Š	2.0	Ş	2 6	2 5	0.0	2	0.1	õ	1.0	2	2 0	2 2	D (2	0.1	Ş	0.
Butanone (MEK)	2	9	2	2 6	2 9	2.0	2	20	Q	2.0	Ŷ		2 2	0.0	2	0.1	ş	5
srbon disuifide	ð	10	2	2	2 9	0,0	2	2.0	2	5.0	2	9	9 9	0.2	9 !	5.0	Š	2.0
arbon tetrachionde	g	2.1	2	2.5	ş	2:	5 4	0.	ę	0,	Ş	10	2 2	0.0	2 5	20	2	5.0
Norobenzene	2	0,	2	. 0	2	7 -	å 5		6 !		g	2.	2	5 6	2 2	0.5	ş	1.0
loroethane	2	2.0	Š	2.0	9	20	2 5	2 6	2	1.0	Š	0,1	9	10	2 5		0.45	2.1
indicated and a second	3.2	0.5	1.7	0.5	4.7	0.5	9 6	2 4	2:	2.0	2	2.0	2	2.0	2 5	2.0	2	0,1
nordmemane	9	5.0	ð	5.0	2	200	2 5	0.6	39	9:0	2	0.5	2	90	5 5	9 4	2;	2.0
Coletionshood	2	0.1	2	1.0	2	0	2 5	9 9	2 9	50	2	2.0	2	20	Ş	9 6	₹ :	9.0
- Ordinordemane	0.79	<u>ر</u>	0.58 J	5.	0.38	12	37.1	÷ ;	2 6	9	9	1.0	2	-	2	, ,	2 9	5.0
Controloguane	26.0	0	0.25 J	1.0	0.21	101		<u> </u>	2.30		9	4,2	Š	17	98.0	9 0	2.5	0 :
1 2 Cichlosophan	0.29 J	0.	0.15 J	1.0	0.98	100		? =		0.	2	0.	ð	9	0.40	¥ ¢	7 6	77
7. Changinghe	E .	1.2	f.8	1.2	9.	12	. C	5 6	6.80	0.	2	1.0	2	0.1	0.81.1	9 0	0.40	0.0
Chichiometheos datali	2 ¢	9.5	2	9.0	Ş	0.5	S	90	2 2	, c	2 9	1.2	2	1,2	7.1		7 6	2 ;
:-Olchlorooroone	3 5	. ·	1.7	0	S	1.0	5,2	1,0	200		2 9	0.5	2	0.5	S	0.5	9	4 6
-1,3-Dichloropropene	2	9 0	2 2	0.0	2	9.	ę	0.	9	90	2 2	9 6	9 9	9	9.6	0.1	5.5	0.0
ns-1,3-Oichlomoropene	9	0,1	2 5	9.6	2 5	0,	9	0.1	2	9.	Ş	2 9	2 5	0,0	2	1.0	N	1.0
yfbenzene	2	0.	2	9 0	2 5	9 9	2 :	0	ş	0.	Ş	0.1	2	2 6	2 2	0,0	2	0.
lexanone	Ş	5.0	Ş	0.0	2	2 0	5 5	0.0	2	0.	ð	0,1	9		2 2	5.6	9	0
inyvene chloride	3.5	2.0	2.7 J	5.0	0.26 J	200	2 2	0 0	2 !	2.0	Q	5.0	Ş	200	2 5	2.0	5	1.0
rens Dentanone	2 :	2.0	õ	5.0	2	20	, c	9 6	29	0.0	2	0.0	0.23 J	2.0	14.1	200	2 2	2.0
2 2. Tetrarchiomethase	5 5	0.	2	0.	2	0,1	2	10	2	200	2	9.0	2	5.0	S	0	Ę	9.4
(achionethene	2 5	2	2 8	0	2	1.0	ş	0.1	5	2 0	2 5	9 9	2	0.	S	1.0	2	3 5
uane	2		7070	4.	4	4.	4	* :	8	4	2 5	2 4	2 9	0 ;	ş	0.1	S	0,1
,1-Trichloroethane	2	80	2 5	2.0	2;	1.0	Š	0.	ş	0.	2		ŞŞ	* :	0.28 J	*	ន	1.4
,2-Trichloroethane	2	0	9	0 0	# C	9.0	3.5	9,0	3.5	8.0	Ş	8.0	5	9.6	2	0.	£	1.0
chloroethene	9	0	0.39		Ş Ş	9.0	2	0.	皇	0.1	9	0,1	Ş	9 4	2 2	B.0	1.9	8.0
y chloride	0.18.5	7	2	-	33.	2 .	2 2	0.	ឧ	0.	ð	0.1	2	2 5		9.5	2	0.1
enes (total)	2	1.0	Ş	1.0	9		2		08.0	1,1	Š		Ş	2	22.0	2 -	9.0	9
Dedicatedide						?	2	<u>.</u>	2	9.	9	0.	õ	9.	Ş	. 0	2 2	
and	Kestill.	Errov/MDA	Result	Error/MDA	Result	ErrorMDA	Result	Error/MDA	Result	Franchicha	Bassille						?	?
to Colombian Inch	100	1.80 10-7	,	7.42 10"/		┝	l	+-	1	6 18 40 ³ /	1	ETTOTIMUA	Result	ErronMDA	Result	Error/MDA	Result	Error/MDA
at Cranium (PCI/I)	1.33 10	7.29 10*	5.52 10"	7.29 102	9.5	7.29 10-2	9.66	707	2.25 10-2	7.29 10-2			1 17 10-2	2.61 103/		6.99 10"	1	5.54 103/
												-	2	21.63.7	3.18.10	7.29 10*	1.98 10*	7.29 10"2
																		-

Table 3. Mound Plume Treatment System Analytical Results (Preliminary) in ug/l

arrole Rumber	R11		R11 R11 R410 Reactor 1 Sample Line	Keacto o	Name of the last	R13	Reactor 1 Sample Line R14	- Pole Line	Top of Reactor 1 (Influent)	ctor 1	Top of Reactor 1 (Influent)	Top	Top of Reactor 1 (Influent)		Irto Blank	1 19	
	00/27/7	-	12/29/38	12/29/98	+	12/29/98	12/29/98		1/27/99	_	1/27/99		177.00	. ;			
	ETI-R11-S-02		ETI-R11-S-03	ETI-R12-S-01		ETI-R13-S-01	FTLR14.0.0	•	000 CE	-					NEW YORK	\$	4/27/99
arameter	Retuit Imit	Don't	5	Δ.	_	ð	å	Detaction	Defection 72/88	Defection	ETI-R10-S-02-12799	+	ETI-R10-S-03-12798	ETI-R10-	ETI-R10-T-01-12899	ETI-R10	ETI-R10-F-01-12799
cetone		\dagger	THE CHIEF	Kesur Limit	7	٦	Result		Result	Ē		_	Defection		Detection		Detection
enzene	ON C		٠	_	2			-		1		Wesult.	T Wit	Result	Chait	Result	Ē
romodichloromethane	,	2	2 5	1.0			0.18 J	0,1	2	25	2 5	2 9	8	2	10.0	Ş	10.0
romotorm	-		- •	\		9.	2	0,1	2	20	2 5	2 5	2.5	2	0,1	2	0.
romomethane	ND 2.0			0.0	_	0,1	2	5.	£	2.5	2 2	2 9	S 1	2 :	0.5	£	0,
Butanone (MEK)	NO 5.0	2			2 9	5.0	2	2.0	9	5.0	2 2	2 9	0.0	2 9	9.6	₽:	0,
arbon disuffice	ON 0.1	2		2		9.4	12.	5.0	9	12	S 2	Ş	5. 5	2 9	2.0	2	2.0
arbon tetrachlonde	0.49) 2.1	SG .	.,	••		5 -	2 9	2 2	₽:	5.5	ND 2.5	9	2.2	2 2	0.0	29	2.0
Northern	2.	2	0,1	5	2	; ;	2 5		ð ;		39 5.2	47	52	2	; 7	2 9	2;
noroemane .	ND 2.0	_		ND 2:0	2	20	2		2 9	2.5	S.5	2	2.5	2	. 0	2 5	- 6
Horamethane	6, C	9.7		29	#	0.5	. 4	9 6	5 5) C	ND 250	2	9.0	õ	2.0	2	9.0
promochioromethane	2 5	2 <u>2</u>		2. Q:	2	2.0	Ş	200	<u> </u>	y c	27 22	# !	7	Ş	0.5	2	20
1-Dichloroethane	0.55 J	2 8	25	5.5	2	- 6,	ð	0	9	25.5		5 5	0.0	2	2.0	Ş	20
2-Dichloroethane	0.24.) 1.0	027		27.7	0.80		1.0.1	1,2	1.8.1	3.0		2 -	0.0	2 !	Q	ş	0,1
1-Dichloroethene	0.1 1.0	0.98.		200	GEO.		0.44	- -		2.5) t	2 9		ş	1.2
F1,2-Okhloroelhene	8 1.2	5.6		2.5		2.	₹;		3.6	2.5	3.6	4.4	3.6	2 9	9.6	2	0.
ns-1,2-Dichloroethene	NO 0.5	_	0.5			N 0	÷			3.0		54	3.6	Ş	2;	2 9	Q
2-Dichloroethene (total)	5.5	5.2				Q C	⊋ \$	0.5	_	2	ND 1.2	2	2 2	2		29	~ .
- Digital or of the control of the c	Q.	2			•••	? 5	2 9	2.5		2.5		24	2.5	2	9 5	Ş	o d
ri, S-Ukinloropropene	Q :	운			2	: 5	2 5	2.0		52		£	2.5	2	9.5	2 2 2	
Mathematical Country of the country	O 4			ON 1.0		9	2 9		2 9	0,10		2	5.5	2	. 0	2	2 5
Hexanone	2	_	0			6.						2	2.5	9	5	2	2 5
sthylene chloride	_	<u> </u>	0 0			90		9.0		_	2 S	2 !	2.5	Ş	0.1	£	5
Wethyt-2-pentanone			2 0	3.0		90		6.0	7.60 J			22	2 9	2 !	9.0	Ş	9.0
mene			0.0	200	,	0.0	₽!					2 9	ž č	2 9	0.0	2	0°
2.2-Tetrachloroethane	N	9	0,1		- -	2 5	⊋ 9	0.0		2.5		9	2.5	2	9 6	2 2	0.4
uachioroethene	23	£	4.	3.0	2	<u> </u>	55		2 6	5.5		9	2.6	2	5 0	2 2	2 5
1-Trichlomethens	2 9		<u>.</u>		2	9	2	9	; <u>S</u>			8	3.5	2	4.	2	
1.2-Trichloroethane	- •	9 9	D 0	_	0.27 J	9.0	0.44.)	8.0		200	2 4	2 :	5.5	2	0.1	g	0.1
chloroethene		€ 8	9 9	Q :	9	2	2	0,		25	vi c	3 9	2.0	2 !	9.0	ç	9.0
lyl chloride	0.29.1	2 8		7.0	0.28	9	0.35.3	0,1	88	2.5	•	<u> </u>	0 4	2 9	9:	Ş	9,
lenes (lotal)	5 0,1	2		7.2	0.32		0.32.5		₽ Q	2.8	NO 28	9	2 6	2 2	0.	29	9 :
	- 1				<u>}</u>	3	2	e:	ş	2.5	NO 2.5	9	55	2		2 9	- ;
Radionuciide	Result Error/MDA	IDA Result	t Error/MDA	Result Error/MDA	DA Result		Daniel Court	Control		4	ļ	-)	<u> </u>	ž	3.
			2.10 /	3.89 104	⊢	5 D4 103/	Ł	╀	Result Erro	A DE	Result Error/MDA	Result	Error/MDA	Result	Error/MDA	Result	ErrorMADA
lal Uranium (pCu)	2.10 10" 7.29 10"	0.49	7 29 10 2	1.39 10* 7.29 10*	7,2 1,80 10*2	7.29 10*	1.18 10* 7.25		2.70	7.00 40.2	_	;	1,80	ı			5.40 1047
					-		٠.			 2 2	13.4 /.29.10"	13.5	7.29 10*			1.92 10*2	7.29 10*2

Table 3. Mound Plume Treatment System Analytical Results (Preliminary) in ug/l

Control	The color The		Reactor 1	Sample Line	Reactor 1 Sample	Line Reak	tor 1 Sample Line	Reactor 1	Sample Line	Reactor 1 Sar		Pasetter 4 G.					-		-		
Particle Control Particle	Charlest	tion/Date		2799	1111		£		412	RTS		N E	4	Reactor 1 (E	Moent	Reactor 1 dog.	_				
Fig. 10 Fig. 12 Fig.	The control of the				112(18)	+	1/27/99	\$	27/99	1127/8	_	1701			_		_	teactor 1 (influe	_	eactor 1 (Infl	neut)
Part Line Real Line Real Line Real	Part Link Real Link	ne number	ETFR11	S-01-12799	ETI-R11-S-02-127	-	FR11-S-03-12799	ETI-R12	8-01-12700	2 4 10 11				1/25/9		2/23/99	+	2/23/99	+	2/23/98	
No	March Marc	meter	Result	LIMIT	Result Ind				Defection	O CONTRACTOR	efection	ETHR14-S	01-12799	ETHR1E-S-0	-12899	ET-R10-S-01-02		T.Brite m.mm			
No. 10	No. 10 N	S)e	Š	10.0		\dagger		Result	TEL		_	٠.	neucusu.	_	fection	Deta	L	Defend	+	1-R10-S-03-02	8
March Marc	No 10 No No 10	ene	Š	0				ę.	10.0		t	5		Result	Ē	i				_	i go
Mail	Marie Mari	odichloromethane	2	0.0	•	_		2	6.	ş	1.0	2	2 -	2	10.0		-		†		Ĕ
May 20	No. 20	Moloum	2	1.0				2	6.	2	0,	Ş	2 0	2 9	0.5					2 6	
Mar. St. Mar	Mar. So. Mar. Mar	omethane	Ş	2.0	QQ QQ	_		2	0,	2	1.0	Ş	2 9	2 9	0				_	9 9	9 4
Mar. 10 Mar.	No. 10	Buone (MEK)	2	5.0				2	2:0	£	5.0	2 5	2 6	2 9	1.0		_		_	56	
No. 21 No. 22 No. 22 No. 21 No. 21 No. 21 No. 22 N	No. 221 No. 221 No. 221 No. 221 No. 221 No. 222 No.	on disuffide	2	1.0				2	000	£	5.0	2	2 0	2 9	2.0	•	-	9	_	26	۰ ن
NO 10 NO	NO 210	on tetrachloride	2	2.1	•			2	0,	ę	0	2	9 5	2 5	2.0		-	2	_	•	٠,
No. 20 0.20 1.00	No. Color	ODENZENE	2	0,1	•		•	2	7.	2	2.1	2	2 .	2 :	0.			200		2 6	_
National N	No. 10.5 1.5	oemane	ş	2.0	.,		- •	2	0,	2	0.1	2	· ·	2 9	2.1		_	55		· iv	۰.
No. 120 No.	No	Diom	8.7	0.5	8.8	É		2	.2.0	2	2.0	2	2 6	2 :	D.		_	NO.	, ,	÷ (NI (
National Properties	Continue	Omethane	2	2.0		, i		1.8	0.5	0.41 J	0.5	0.64	, u	2 8	2.0			2	_	× •	0 0
State Continue C	Participation Continue Cont	mochloromethane	ş	1.0	•	ž :	-	Ş	2.0	ę	20	2	9 0	92.0	0.5		-		_	•	_
Particle O.4.1 1.0 O.4.2 1.0 1	1.1 1.0 0.62.1 1.2 1.2 1.2 1.2 1.3 1.0 0.63.1	Chloroethane	2.4	12	24	Z .		2	0.	2	0	2 9	0.7	2	2.0		_	2 5	_	+ 1	_
13 15 15 15 15 15 15 15	13 15 15 15 15 15 15 15	chloroethane	0.41		2.7	, z	_	.	7		_	2 5	0.5	2	0.			•	z :	∵	
17.1 17.1	Occordance 12 12 12 12 12 12 12 12 12 12 12 12 12	chloroethene	-		0.1	0.46	•	0.37 J	0,	1 25.0		7.00	7	0.69.0	1,2			•	z	ci	
No. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Marchenberg	2-Dichlomethene	; ¢	2 (_	•	6				0.28 J	0.	0.22 J	0,1		_		-	ر. دي	+
March Marc	Harmonic (1914) 17 10 10 10 10 10 10 10 10 10 10 10 10 10	1.2-Dichlomethene	¥ 5	7.0			•	Ş		2 5		33 1	0.1	2	10	200			0.5		
No. 10 N	No. 160 No.	chloroethene (total)	5 5	0,0		<u>~</u>		99		2 2		3.7		2.6	1.2				40		
No. 1-10	No. 10 N	chloropropana	2 5	9 6		12		2	2	÷.		9		ş	0.5			2.4	-	'n	•
No. 10 N	No. 10 N	-Dichloropropene	2	9 6		2		2	9	; <u>2</u>	2 0	B (0.	2.7	5			9 6	z		
No. 1:0 No.	No. 10 N	1,3-Dichloropropene	2	3 5		2		õ	0.			2 5	0.	9	1.0				N ;		
No. 1.0 No.	No. 5.0 No. 1.0 No.	enzene	Ş			2		ð	0		2 5	2 9	•	2	1.0		_		Z :		_
3.3 5.0 10 10 10 10 10 10 10 10 10 10 10 10 10	3.3 5.0 10 10 10 10 10 10 10 10 10 10 10 10 10	anone	2	2 4		£		Q	9		9 9	2 9	0.5	2	1.0				Z :		_
No. 5.0 1.5	No. 1,00 1	lene chloride	23	2 4		2		2	20		2 4	2 !	0,	2	1.0		_	2 2	z		_
No	No	1yd-2-pentanone	Ş			2.9		3.0 J	5.0		_	⊋ ;	5.0		_		_	2.5	Ž :		_
ethane ND 10	ethane ND 1:0 ND	دو	Ş	9 6		2		2	5.0		_	70.5	200			5.18		2 5	Ž		_
State 1.4 State 1.5	State 14 State 15 Sta	-Tetrachlomethane	2			2	•	õ	0.1			9 9	0.0			NO 25	_	2 5	χ : -		_
No 1.0 No 1.0 No 1.4 No 1.4 No 1.4 No 1.4 No 1.4 No 1.4 No 1.0	NO 1.0 NO 1.4	hioroethene	4.6	2 7		2	•	Š	0.1	2		2 9	0.0	2	0.1	NO SO	_		Z 3		_
NO 0.8	NO 0.8 N	je.	Ş			6.2		0.81 J	*	Ş	?	2 9	0.1	9	0.				z :		_
NO 10 NO 1	NO 10 NO 1	Trichloroethane	Ş			2		Ş	0.	Ş		2 9	4.	2	4				ž (_
1.0 1.0	5.6 1.0 5.6 1.0 5.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	nchloroethane	2	9 6		2	8.0	2	90	Ę	2 2	⊋ 9	0.5		0,1		_	9 6	ī ;		
ND 1.1 ND 1.0	ND 1.1	roelhene		5 6		2	0.	2	0	•		€ 5	9.0		8.0		_	2.4	Z :		_
ND 10 ND 11 ND 11 ND 11 ND 11 ND 11 ND 12 ND 13 ND 13 ND 14 ND 15 ND	ND 1.0 ND 1.1 ND 1.1 ND 1.1 ND 1.1 ND 1.1 ND 1.0	hloride	S	? •		5.9	0.1	0.64	9	•	_	2 5	0.0		9			9 6	4. ;		_
No	## Result Error/MDA Res	s (total)	Ş			2	÷	9	7	5	•	3 4	0.		<u>.</u>				ź :		_
Pesut Error/MDA Result Result Error/MDA Result Error/MDA Result Error/MDA Result Error/MDA Result Error/MDA Result Error/MDA Result Result Error/MDA Result Error/MDA Result Error/MDA Result Error/MDA Result Result Error/MDA Result Result Result Error/MDA Result R	Result Error/MDA Result Error/MDA Result Error/MDA Result Error/MDA Result Error/MDA Result Error/MDA Result Error/MDA Result Error/MDA Result Error/MDA Result Error/MDA Result Error/MDA Result Error/MDA Result Error/MDA Result Error/MDA Result Result Error/MDA Result Result Error/MDA Result Result Result Error/MDA Result		!	<u>-</u>		2	1.0	9	0.	9		2 9		. ₽	_			200	8 5		_
4.00 10 ³ 1 5.10 10 ³ 1 5.00 10 ³ 2.56 10 ³ 7.29 10 ² 7.20 10	4.00 10 ³ 7, 5.10	Radionuciide	1	╀	İ	4	1	1	-			2	?	2	<u> </u>	5.0		202	ž ž		_
1.4110° 7.2910° 7.2910° 2.5610° 7.2910° 7.2910° 7.2910° 1.1110	1.41 10 ² 7.29 10 ² 1.83 10 ² 7.29 10 ² 2.58 10 ² 7.29 10 ² 8.51 10 ³ 7.29 10 ² 1.74 10 ⁴ 7.29 10 ² 1.11 10 ² 7.29 10 ² 1.11 10 ² 7.29 10 ² 1.29 10 ²		ĺ	┞	ļ	4	1	- 1	4	П	L	1	+	ı	+	1	-	1	_		
2.56 10 7.29 10' 8.61 10' 7.29 10' 1.729 10' 1.11 10' 7.29 10' 10' 10' 10' 10' 10' 10' 10' 10' 10'	2.55 10	frantum (pCM)		_			•		2.70 103/	3.70	L	ı	+	ı	4	-1	\dashv	li	₽	J	Ş
	01 76"							9.81 103	_			•			, or			ı	⊢	ŧ	5

Page 5 of 5

	Reactor 1 c.	10 10 10 10 10 10 10 10
Appendix A	Reactor 1 Sample Line Reactor 1 Sample Line R13	10 10 10 10 10 10 10 10
5	ine Reactor 1 Sample Liv	T- ()
Table 3. Mound Plume Treatment System Analytical Results (Preliminary) in ugd	Line Reactor 1 Sample Line R11	A S S S S S S S S S S S S S S S S S S S
System Analytical Res		A S S S S S S S S S S S S S S S S S S S
ound Plume Treatment	7rip Blank 273399 ET-R10-1-022499	NO N
Table 3. M.	LocationDate Sample Number Parameter	ne n